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What is uncertainty quantification? My current favorite 
definition 

Uncertainty quantification involves the 
•  identification (where the uncertainties are), 

- Physics model, data, environment, … 

•  characterization (what form they are), 
- Parametric (bounds, PDF, beliefs), model form 

•  propagation (how they evolve, forward/inverse), 
- Choice of method influenced by model characteristics 

•  analysis (what are the impacts, quantitative) , and 
- Sensitivity analysis, risk analysis, … 

•  reduction 
of uncertainties in simulation models. 

Not including method development
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In order to perform UQ on a given application, we need 

  An UQ process 
•  A well-thought plan with a well-defined objective 
•  Consisting of a number of steps 
•  Each step may require expert judgment or suitable UQ methods 

  Relevant UQ methods (forward propagation, SA, calibration) 
•  Intrusive methods 
•  Non-intrusive methods 
•  Hybrid (intrusive+nonintrusive) methods 

  Adequate hardware/software infrastructure to perform UQ 
•  Job management: scheduling, monitoring 
•  Data processing 
•  Analysis and visualization of results 
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Every UQ study should start with a plan (process) 
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1. Define the objective of the UQ study (e.g. quantify risk) 
2. Problem specification (model, assumptions, QOI, available data) 
3. Perform verification experiments (to assess numerical errors) 
4. Preliminary parameter identification and selection 
5. Prescribe initial parameter distributions (literature, expert opinion) 
6.  Integrate observation data into models 
7. Parameter screening 
8. Build inexpensive surrogates/emulators 
9. Uncertainty/Sensitivity analysis 
10.   Risk/predictability assessment 
11. Expert reviews, documentation 

Defining a UQ process early on will help to identify UQ 
methodologies needed for a given application.

For example, a UQ process may include the following 
 steps, which identify key UQ methodologies needed 

communication
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Identification of the sources of uncertainty (so many!) 

    Experiments    Observations

Physical phenomenon

Design parameters Model responses

Mathematical model/simulation code

Uncertainties in:
-  Design parameter values
-  initial/boundary conditions
-  Measurement errors
-  surrounding environment

Uncertainties in:
-  Physics sub-models
  * imprecise/simplified physics
  * data-driven empirical models
-  Sub-model couplings
-  Missing physics
-  Model implementation
-  Roundoff errors
-  Algorithmic errors (e.g. MC)
-  Discretization errors

- Measurement
  errors
- Data scarcity
- Noisy data

** need to  identify ALL key sources of uncertainties????
All UQ analysis are wrong, but how wrong do they have to be not to be useful?

identification A systematic methodology for identification??
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An Example: Carbon Capture System 

Sources of uncertainties: (simplified models)
flue gas composition, chemical kinetics, mass
transfers, geometries, corrosion, external conditions,
Chemical reaction model, modeling of the absorber columnidentification

% CO2 capture
Steam used
Cost of electricity
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Nature of uncertainties in other applications 

  Uncertainties in the use of approximate models 
  Uncertainties in physics parameters/models 
  Uncertainties in integral measurements and derived 

quantities 
  Uncertainty in the uncertainties of the data 
  Ambiguities in historical data 
  Uncertainty effect of surrogate materials  

•  In related small scale experiments 
  Effect of material aging 
  Experimental data less relevant with time 
 Model used to predict scale-up (untested) systems 

identification A systematic methodology for identification??
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  Known pdfs
  Unknown pdfs

•  use intervals or belief functions
•  missing physics (will give systematic errors)

  Mixed
•  known pdfs, unknown distribution parameters

  Model form uncertainties
•  many possible equations to represent the submodels
•  each sub-model may have its own mixed uncertainties

  Errors (considered as uncertainties?)
•  discretization errors, roundoff errors, algorithmic errors

Classification of uncertainties 

characterization
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Uncertainty Characterization 
 We always say: obtain parameter uncertainties from 

expert judgment, literature, and experimental data 
 Most application scientists do not know for sure the 

parameter distributions 
 Many papers that compare models against data do not 

include estimation of posterior distributions 
 Most parameter distributions/bounds are based on 

calibration/validation results, but many data suffer the  
problem: difficult to characterize data uncertainties 
•  Uncertainties of uncertainties 

  How to prescribe uncertainties to handle extrapolation? 
  Insufficient characterization may have significant effect 

on UQ analysis results. 

characterization
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The creditability of UQ results depends a lot on the 
characterization of uncertainties 

characterization
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Some UQ objectives 
  Compute output distributions input uncertainties
  Identify parameters that contribute most to output uncertainties

•  Quantify such contributions
•  Research prioritization

  Characterize parameter distributions (feasible subspace) that best fit a 
collection of systems

  Study how uncertainties in data distributions affect output uncertainty
  Study parameter correlation induced by observation data
  Identify systematic errors (unknown unknowns?)
  Use calibrated parameters to predict hold-out systems (near-by)
  Parameter study (e.g. explore nonlinear and interaction effects) 
  Analyze uncertainties due to alternative sub-model forms 
  Evaluate risks (e.g. failure to meet regulations) in view of uncertainties 
  Find optimal settings while taking uncertainties into consideration 

Propagation
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Multi-physics Model Characteristics Encountered 
  Simplified/empirical physics sub-models abound 
  Models are expensive to evaluate (hours on many processors) 
  Nonlinear input-output relationships anticipated 
  Abrupt changes/discontinuities possible but not encountered yet 
  High-dimensionality of the uncertain parameters (10’s -100’s or more) 
  Untypical correlation between uncertain parameters (from calibration) 
  Mainly epistemic uncertainties (aleatoric forthcoming) 
  Uncertainties in uncertainty bounds and distribution parameters 
  Model form uncertainties abound (have not addressed them yet) 
  Different observation data (component, subsystem, full system) 
  Data scarcity and uncertainties about data uncertainties 
  Model operating at different regime than experiments (extrapolation) 
  Uncertainties mixed with numerical errors 
  Unknown unknowns (unknown processes, unknown couplings) 

Propagation
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  Classical methods such as SRC may not be sufficient 
  Local perturbation-based sensitivity analysis may not be sufficient 

•  Global sensitivity analysis methods are needed 
  Dimension reduction/variable selection methods may be needed 

•  Nonparametric methods needed for nonlinear problems 
  Many runs may be needed to resolve nonlinearities/interaction 

•  Adaptive sampling may be needed if complexity is local 
  Parametric surrogate methods may not be feasible 

•   Non-parametric surrogates/response surfaces may be needed 
  Hierarchical/multi-stage data fusion methods may be needed 

•  Empty set (zero posteriors, systematic errors) may be encountered 

Implication of the model characteristics of multi-physics 
models on the selection of UQ methodologies/methods 

Proper selection of methods are critical in defensible UQ analysis.

Propagation



15 

Different approaches to propagate uncertainties 

   M2 

   M1     M4     M5

   M3

  Intrusive approach 

Stochastic simulation
(UQ embedded in the model)

  Non-intrusive approach 

Uncertainty
information

  hybrid approach for multi-physics (one scenario) 

   UQ Engine

  Model
  Model

Uncertainty
information

Intrusive modules

Wrapped by mini-UQ engines (sampling)
There can be some intrusiveness

Many deterministic simulation

Uncertain
inputs

Uncertain
inputs

Uncertain
inputs

Propagation
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  Forward propagation
  Data fusion/parameter estimation/calibration
  Input dimension reduction/variable subset selection
  Output dimension reduction
  Response surface analysis
  Sensitivity analysis (global/local, parameter/component)
  Risk analysis
  Data assimilation
  UQ software design

UQ development categories 

UQ science is multi-disciplinary in nature
-  computational math
-  applied statistics
-  computer science (e.g. machine learning)
-  domain science

Propagation
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physical 
system

computer
model

surrogate
model

UQ
analysis

V&V
UQ

Propagation

V&V
UQ?

The role of surrogate models 

  Once a good surrogate model is available, many tasks such as
   forward propagation and global sensitivity analysis can be
   computed cheaply.
  Q: How best should the surrogate model be validated and its
        uncertainties quantified?

Ref: Hemez/Atamturktur (RESS)
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Elements of a response surface method 

Active research in
-  computational math
      grad-based, sparse grids
-  statistics (e.g. GP)
-  machine learning

  Sampling methods 
•  Space-filling designs 
•  Special points for specific functions 
    (e.g. central composite, collocation points) 

  Hypothesis function space (curve-fitting methods) 
•  Polynomial regression, non-intrusive polynomial chaos 
•  Splines (number of basis, degree of interaction) 
•  Gaussian process (covariance function) 
•  Artificial neural network, ….. 

  Response surface validation 
•  Training error  
•  Hold-out 
•  Cross validations 
•  Prediction errors (GP) 
•  Goal-oriented metrics 
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  Come up with an accurate mapping 
•  It is a model (surrogate) selection problem 
•  Using as few sample points as possible 

  Curse of dimensionality 
•  Complexity grows exponentially as the no. of parameters 
•  Boundary coverage 

  Abrupt changes/discontinuities 
•  In search of effective adaptive methods 

  Combination of model form & parametric uncertainties 
•  Combinatorial problem 

  Practical questions:  
•  how to handle failed sample points? 
•  how to detect outliers? 

Challenges in response surface methods 
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Two Response Surface Approaches 
  Passive learning 

  Active Learning (adaptive) 

Generate a sample 
Evaluate                                                                  
Find             (hypothesis function space ) such that  
             (some error measure) is minimized.     

k = 0,  
While tolerance not satisfied 
    Generate a sample                                                     given 
S 
    Evaluate 

    Find             (hypothesis function space ) such that  
                   (some error measure) is minimized. 
    check error measure for convergence, k = k + 1   

Uniform
And/or
Adaptive
refinements

General purpose methods??
(MARS with bootstrapping)
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We can borrow some theory from machine learning 
(Castro, Willett and Nowak) 

  Define 
•  m: number of parameters, n: sample size, sample point i: 
•  Sampling strategy (using n point):      , Function estimator:  

  Consider a function which is Holder smooth with Σ(L, α) 

  Main result from passive learning: 

  Active learning: 

  Active learning result: 

  Thus, when a function is spatially homogeneous, active learning 
has little  advantage over passive learning. Active learning is 
appealing for piecewise constant/smooth functions.
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Convergence results for Test Problem 3 
 mars w/ bag. Green: mars w/ NN variance black: random pick
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Test Problem 3: An 2-parameter function with discontinuity 

  100 to 700 points at an increment of 50
  each method is run 40 times (random initial sample)
  use a validation data set of 5000 points
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  Spatial-temporal randomness  
•  e.g. random variable B(x) defined on the spatial domain 

•  usually comes with spatial correlation (covariance function) 

•  reduce dimension via principal component analysis (KL) 

  Reduce the dimension of the output variables 
•  methods based on PCA and kernel PCA 

  Reduce the number of physics parameters 
•  the goal is to select a subset of “sensitive” parameters ( features) 

•  also called variable subset selection (VSS) 

•  methods from computational math, statistics, machine learning 

•  parametric and nonparametric methods 

Dimension reduction methods are used to compress or 
down-select the large number of uncertain parameters 
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Variable subset selection methods 

  Methods based on linearity assumptions 
•   Standardized regression coefficient or SRC 
•   Plackett-Burman 
•   derivative-based local sensitivity analysis 

  Methods based on monotonicity assumptions 
•   Spearman rank correlation coefficient  

  Non-parametric ethods based on global smoothness assumptions 
•   surrogate-based methods (spline or kriging) 
•   Morris method 
•   tree-based methods (BART, CART) 

  Non-parametric methods based on local smoothness assumptions 
•   Delta test (based on nearest neighbors) 
•   tree-based methods  

  Other methods: data rich methods (under-determined: regularization) 

Assumptions/
objectives

Let               , design and evaluate                                          . 
Select                 such that                                  where 
              is the information that        brings about     .      
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Data: number of successes out of 100 runs
SPEA does not work well probably due to non-monotonicity

Method Size = 55 Size = 110 Size = 220 

SPEA 14 9 13 
Morris 94 100 100 
MARS 97 100 100 
MARS+VD 98 100 100 
Delta Test 100 100 100 
SumOfTrees 72 96 100 

  
  
  
  
  

An Example Comparing Different VSS Methods 
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Method Size = 210 Size = 420 

SPEA 0 0 
Morris 6 24 
MARS 3 22 
MARS+VD 3 18 
Delta Test 17 61 
SumOfTrees 1 3 

Problem characteristics: active region 1/32 of domain
Noise dominates and pollutes all methods

  

Another Example Comparing Different VSS Methods 
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  Component physics level (plenty) 
•  turbulence models 
•  material models (some physics-based, some empirical) 
•  Some of these are from focused experiments (e.g. a different 

experimental setup but with the same materials) which in turn 
have their own uncertainties outside the model in consideration 

  Subsystem level (some) 
•  e.g. Multiple material models + fluid dynamics 

  Full system level (scarce) 
•  Some of which may be unreliable (large errors) 

•  These data may become less relevant with time 

Need a unified framework for data fusion at different stages/
levels 
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A framework for multi-stage data fusion/calibration 

CE1

CE2

P(X1)

P(X2)

CE5

P(X4)

P(X5)

P(X3)

π(X1)=P(X1|P(X1),CE1)

π(X2)=P(X2|P(X2),CE2)

π(X5,T5)=P(X5,T5|P(X5),P(T5),CE5)  marginalize  π(X5) 

Prior input 
Distributions 
(independent) 

Full
Model

π(X1,X2,X3) = 
P(X1,X2,X3|π(X1),π(X2),P(X3),CE3)

CE3

CE4a

CE4b

πa(X4) =P(X4|P(X4),CE4a)

πb(X4) =P(X4|P(X4),CE4b)

π(X4) =P(X4|P(X4),CE4a,CE4b)

P(T5)
  Bayesian network (issue: aleatoric/epistemic) 
  Issue: priors may not be known well (2nd order analysis) 
  Software design (flexible, compatible, data movement) 
  systematic errors 

CE: focused experiments 

Final UQ/SA

Gates
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  Methods and sampling strategies (arbitrary posteriors) 
•  first order 

•  replicated Latin hypercube (or random) 
•  response surface + direct numerical integration 

•  second order 
•  replicated orthogonal array (or random) 
•  response surface + direct numerical integration 

•  total order 
•  extended Fourier Amplitude Sampling Test 
•  response surface + direct numerical integration 

•  group 
•  response surface + direct numerical integration 

The building blocks of a global sensitivity analysis methodology 
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Software design issues in putting all these together 

Screening designs
Second order

sensitivity indices

Markov chain
Monte Carlo

Correlation analysisOrthogonal arrays

Artificial neural

networks

Cross validation

Analysis of variance

Kolmogorov Smirnov test

Delta test

Factorial design

Sparse grids

A Problem Solving Environment for 
Uncertainty Analysis and Design Exploration 
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  Validation metrics 
  Quantifying extrapolation uncertainties 
  Validation of UQ methods (self-validation?) 
  Model form uncertainties 
  Guidelines for formulating UQ approach 
  How to study uncertainties and errors together 
  Many challenges in the intrusive and hybrid worlds 
  ……. 

Many other challenges 
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Challenges and Opportunities for Hybrid UQ 

Main driver

M1 M2 M3 M4

M4

  Flexibility 
  support “plug-and-play” 
  support progressive code  
   enhancement 
  some sub-models may easily be intrusified, others may not  
  new uncertain parameters can easily be added 

  Mathematical rigor 
  intrusifying sub-models increases mathematical understanding 
  facilitate uncertainty tracking between sub-models 

  Less challenges compared to fully intrusive methods? 
  difficult parts of the model can use non-intrusive methods 
  model developers need not understand UQ for the whole system 
  easier to debug codes 
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  Mathematics R&D 
•  Uncertainty representation between modules 
•  Error analysis of transformation between representations 
•  Dimension reduction (uncertain parameters) 
•  Sensitivity analysis (variance-based) 
•  Calibration/data fusion (data available at module level) 
•  different probability distributions for different variables 
•  parallel linear solvers for intrusive modules 

  CS R&D 
•  tracking uncertainties throughout the simulation 
•  application programming interface (wrapper) design 
•  integration of non-intrusive UQ methods 
•  scheduling/load balancing 
•  fault tolerance 

Research and Development Issues for hybrid UQ 
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THE   END 

Good UQ practice requires IQ, CQ and EQ
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Deadly Sins in UQ practice 

1.  Not exercising due diligence in understanding the limitations of 
the proposed UQ approaches 

2.  Not exercising due diligence in identifying key sources of 
uncertainties 

3.  Not exercising due diligence in characterizing the sources of 
uncertainties 

4.  Selecting UQ methods that do not match model characteristics 
5.  Sensitivity analysis has nothing to do with uncertainty 

quantification (you are just doing SA, and not UQ). 
6.  We can do UQ without using data. 
7.  Thinking that UQ is just math/statistics. 
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A few observations about multi-physics code development 
  Usually begin with simple physics 

•  Low fidelity, approximate physics & couplings 
•  Many empirical sub-models 
•  focus on mimicking key phenomena qualitatively 
•  Strive for low computational cost 
•  Operator splitting for ease of plug-and-play 

  Progressive code enhancement: better physics 
•  Better physics understanding 
•  Validation shows inadequate fidelity 
•  Advances in algorithms 
•  Advances in hardware 

 Many hidden assumptions 
•  how to do a good job in identifying uncertainties 
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Fundamental formulas for UQ 


